
UI Feedback
optimizations in Lens

Meeting
Sep 27th 2022

How to have efficient, large-scale feedback in a Dplug
plug-in.

Lens plug-in = more feedback than typical for us

GAIN MAP
Display energy estimate, and gain
reduction for compressor and
expander in gain map.

EQ
Each EQ has spectrogram, one of those
display also gain reduction from
compressor.

● Fast. It should be cheap enough to be activated at all time. (Thankfully dplug:canvas is fast)

● Large. People want many things to be feedback visually.

● Non blocking. It’s not worth holding back the audio if the UI struggles.

● Decoupled from DSP buffer size.
● Decoupled from DSP sampling rate.
● Sync. Visual should approximately correspond to audio temporally.

What are the desirable properties of
DSP to UI feedback?

Why not just use
core.atomic? DSP

UI

shared(int) V;
int V_display;

atomicStore

onAnimate “ V
changed, call setDirty et
set V_display”

main.d

gui.d

onDrawRaw
draw with V_display

atomicLoad

process “send
measured value of V”

Why not just use
core.atomic? DSP

UI

shared(int) V;
int V_display;

atomicStore

onAnimate “ V
changed, call setDirty et
set V_display”

main.d

gui.d

onDrawRaw
draw with V_display

atomicLoad

process “send
measured value of V”

● Fast. ✅
● Large. ❌ (it’s just one scalar)

● Non blocking. ✅
● Decoupled from DSP buffer size.❌
● Decoupled from DSP sampling rate.❌
● Sync.❌

Why not just use
a mutex? DSP

UI

int V;
int V_display;

lock/unlock

onAnimate “ V
changed, call setDirty et
set V_display”

main.d

gui.d

onDrawRaw
draw with V_display

lock/unlock

process “send
measured value of V”

● Fast. ✅
● Large. ✅
● Non blocking. ❌
● Decoupled from DSP buffer size.❌
● Decoupled from DSP sampling rate.❌
● Sync.❌

What’s the problem with (large) buffer size?
Say we have 400ms buffer size, and the plugin is 20x realtime. Takes 20ms to process audio.

400ms of audio (buffer size)

DSP thread

UI thread

DSP
(20ms)

DSP
(20ms)

400ms of audioAudio output

time

Whole UI state for 400ms of audio events here

Draw
Feedback

Draw
Feedback

What’s the problem with (large) buffer size?
Say we have 400ms buffer size, and the plugin is 20x realtime. Takes 20ms to process audio.

400ms of audio (buffer size)

DSP thread

UI thread

DSP
(20ms)

DSP
(20ms)

400ms of audioAudio output

time

Whole UI state for 400ms of audio events here

Draw
Feedback

Draw
FeedbackFEEDBACK IS FROZEN HERE

What’s the problem with (large) buffer size?
Say we have 400ms buffer size, and the plugin is 20x realtime. Takes 20ms to process audio.

400ms of audio (buffer size)

DSP thread

UI thread

DSP
(20ms)

DSP
(20ms)

400ms of audioAudio output

time

Whole UI state for 400ms of audio events here

Draw
Feedback

Draw
FeedbackFEEDBACK IS FROZEN HERE

FEEDBACK FROM BACK OF
BUFFER IS DISPLAYED BEFORE

THE AUDIO HAPPENS

You need a queue somewhere.

onAnimate should read the queue progressively,
and at the right speed.

You need a queue somewhere.

That’s where TimedFIFO originated (2016).

Using dplug.core.ringbuf.TimedFIFO

400ms of audio (buffer size)

DSP thread

UI thread

DSP
(20ms)

DSP
(20ms)

400ms of audioAudio output

time

Enqueue 400ms of state in TimedFIFO + samplerate

Dequeue and draw feedback progressively, samplerate = in-band

TimedFIFO
DSP

UI

TimedFIFO!int Vqueue;
int[N] V_display;

trylock/unlock

onAnimate “ use the
queue, call setDirty if
anything changed”

main.d

gui.d

onDrawRaw
draw N last samples
with V_display

trylock/unlock

process “send
measured value of V
with audio samplerate”

● Fast. ✅
● Large. ✅
● Non blocking => almost
● Decoupled from buffer size => almost

● Decoupled from sampling rate => …no!❌
● Sync.✅

TimedFIFO problems

● Samplerate. Optimal queue size depends on sample rate, which changes
everything again. At 96000 Khz, queue is emptied faster. But no
knowledge of sampling rate at queue startup.

● (typically) Buffer size. Even if you gather feedback every 32 samples, if
your buffer size if not multiple of 32, you will forget some.

● Non-blocking. One trylock is kinda ok for the whole feedback, but the
problem is that typical plugin have several such TimedFIFO.

This is where we stopped for earlier Auburn Sounds plugins.

LENS compressor = more feedback than typical for us

Compressor Input volume (64 bands)
Expander Input volume (64 bands)
Compressor Gain reduction (64-bands)
Expander Gain reduction (64-bands)
Spectral volume for sidechain (64-bands)
Spectral volume for wet signal (64-bands)
etc…

The whole unit of feedback:

519 scalar values transit from DSP to UI,
measured 40x per second.

Feedback Tip #1: single FeedbackData struct

1. Have one single
FeedbackData struct
for all plugin feedback.

2. Have one single
TimedFIFO for that

3. Profit from
less synchronization

Feedback Tip #2: compute feedback 40x / sec,
 and for a single sample.

in processAudio callback

in processAudio callback

ONLY COMPUTE THE FEEDBACK STRUCT IF
 collectFeedback == true

AND THEN, ONLY FOR ONE SAMPLE
IN THE WHOLE SUB-BUFFER.

PASS THAT INFO IN ALL DSP THAT HAS
FEEDBACK.

in processAudio callback

In lens, max subbuffer size is 512 samples,
and feedback period is 1102 samples at 44100Hz.
Feedback will only break down at 11025Hz.

in gui.d

Instead of pushing the audio samplerate in-band,
give the FIFO the feedback sampling rate. (here = 40Hz)
FIFO created with 12 slots, corresponding to 12 * 1000/40 ms of feedback
independently of the audio sampling rate. 🎉

● Fast. ✅
● Large. ✅
● Non blocking: almost ✅
● Decoupled from buffer size. ✅
● Decoupled from sampling rate.✅
● Sync.✅

Annoying, but worth it.

Feedback Tip #3: accumulate delta time when
onAnimate is called with small dt

Feedback Tip #3: accumulate delta time when
onAnimate is called with small dt

Basically = not worth it to redraw for too small a change.

Save CPU
by avoiding
some redraw.

100 ms

Feedback Tip #4: Fix your timestep when needed.

● onAnimate is called repeatedly, but with any variable
delta time (dt).

● Like in video games, this can be tricky for animation,
especially if you want points with trails.

● But you can manually fix your timestep for some
widgets.

can be small
or very large

Fixed animation rate howto

100ms

eventually hoist
computation out of the
fixed animation toop
(unsure gain here)animationFrame called 10x per second

Feedback Tip #5: Drawing performance.

● Use dplug:canvas, it write 4 pixels at once.

● Do not update PBR layer for animation, except for
small widgets.

● (advanced) You can dirty only the graphics subpart of the
widget that you know will be affected.

● Things will draw faster if update area rectangle is small
and constrained. But, hard to do.

Same old advice.

Questions?

Thanks for listening!

